Характеристика анаэробной микробиоты дыхательных путей детей с муковисцидозом
https://doi.org/10.31146/2949-4664-apps-2-4-28-34
Аннотация
Об авторах
Т. В. ТронзаРоссия
А. Ю. Воронкова
Россия
И. Р. Фатхуллина
Россия
Е. И. Кондратьева
Россия
А. А. Плоскирева
Россия
П. П. Трегуб
Россия
Список литературы
1. Tunney M.M., Field T.R., Moriarty T.F. et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008 May 1;177(9):995-1001. doi: 10.1164/rccm.200708-1151OC.
2. Wellinghausen N., Köthe J., Wirths B. et al. Superiority of molecular techniques for identification of Gram-negative, oxidase-positive rods, including morphologically nontypical Pseudomonas aeruginosa, from patients with cystic fibrosis. J Clin Microbiol. 2005;43(8):4070-5. doi: 10.1128/jcm.43.8.4070-4075.2005.
3. Muhlebach M.S., Hatch J.E., Einarsson G.G. et al. Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J. 2018 Jul 11;52(1):1800242. doi: 10.1183/13993003.00242-2018.
4. Nguyen M., Sharma A., Wu W., Gomi R., Sung B., Hospodsky D., Angenent L.T., Worgall S. The fermentation product 2,3-butanediol alters P. aeruginosa clearance, cytokine response and the lung microbiome. ISME J. 2016 Dec;10(12):2978-2983. doi: 10.1038/ismej.2016.76.
5. Phan J., Gallagher T., Oliver A., England W.E., Whiteson K. Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2018 May 1;365(10): fny082. doi: 10.1093/femsle/fny082.
6. Ulrich M., Beer I., Braitmaier P. et al. Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis. Thorax. 2010 Nov;65(11):978-84. doi: 10.1136/thx.2010.137745.
7. Polikarpova S.V., Zhilina S.V., Kondratenko O.V., Lyamin A.V., Borzova Yu.V., Zhestkov A.V. Guidelines for the microbiological diagnosis of respiratory tract infections in patients with cystic fibrosis, Moscow, 2019, 127 p. (in Russ.) ISBN 978-5-94789-905-4
8. Practical recommendations for laboratory diagnostics of anaerobic infection Practical recommendations of the association. FLM Moscow. 2021. (in Russ.) Available at: https://fedlab.ru/upload/iblock/c99/Практические%20рекомендации%20по%20диагностики%20анаэробной%20инфекции%20%20Финал.pdf (Accessed: 01.11.2024)@@ Практические рекомендации по лабораторной диагностике анаэробной инфекции Практические рекомендации ассоциации. ФЛМ Москва 2021. URL: https://fedlab.ru/upload/iblock/c99/Практические%20рекомендации%20по%20диагностики%20анаэробной%20инфекции%20%20Финал.pdf
9. CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 9th ed. CLSI standard M11. Wayne, PA: Clinical and Laboratory Standards Institute; 2018, Volume 38, Number 19. ISBN 978-1-68440-021-8
10. Cowley E.S., Kopf S.H., LaRiviere A., Ziebis W., Newman D.K. Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation. mBio. 2015 Jul 28;6(4): e00767. doi: 10.1128/mBio.00767-15.
11. Rogers G.B., Carroll M.P., Serisier D.J., Hockey P.M., Jones G., Bruce K.D. characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol. 2004 Nov;42(11):5176-83. doi: 10.1128/JCM.42.11.5176-5183.2004.
12. Zemanick E.T., Wagner B.D., Sagel S.D., Stevens M.J., Accurso F.J., Harris J.K. Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens. PLoS One. 2010 Nov 30;5(11): e15101. doi: 10.1371/journal.pone.0015101.
13. Tunney M.M., Klem E.R., Fodor A.A. et al. Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax. 2011 Jul;66(7):579-84. doi: 10.1136/thx.2010.137281.
14. Zemanick E.T., Harris J.K., Wagner B.D. et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One. 2013 Apr 30;8(4): e62917. doi: 10.1371/journal.pone.0062917.
15. Hauser P.M., Bernard T., Greub G., Jaton K., Pagni M., Hafen G.M. Microbiota present in cystic fibrosis lungs as revealed by whole genome sequencing. PLoS One. 2014 Mar 5;9(3): e90934. doi: 10.1371/journal.pone.0090934.
16. Carmody L.A., Caverly L.J., Foster B.K. et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One. 2018 Mar 9;13(3): e0194060. doi: 10.1371/journal.pone.0194060.
17. Flynn J.M., Niccum D., Dunitz J.M., Hunter R.C. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease. PLoS Pathog. 2016 Aug 22;12(8): e1005846. doi: 10.1371/journal.ppat.1005846.
18. Sherrard L.J., McGrath S.J., McIlreavey L. et al. Production of extended-spectrum β-lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota.Int J Antimicrob Agents. 2016 Feb;47(2):140-5. doi: 10.1016/j.ijantimicag.2015.12.004.
19. Quinn R.A., Whiteson K., Lim Y.W., Salamon P. et al. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J. 2015 Mar 17;9(4):1052. doi: 10.1038/ismej.2014.266.
Рецензия
Для цитирования:
Тронза Т.В., Воронкова А.Ю., Фатхуллина И.Р., Кондратьева Е.И., Плоскирева А.А., Трегуб П.П. Характеристика анаэробной микробиоты дыхательных путей детей с муковисцидозом. Архив педиатрии и детской хирургии. 2024;2(4):28-34. https://doi.org/10.31146/2949-4664-apps-2-4-28-34
For citation:
Tronza T.V., Voronkova A.Yu., Fathullina I.R., Kondratyeva E.I., Ploskireva A.A., Tregub P.P. Characteristics of the anaerobic microbiota of the respiratory tract of children with cystic fibrosis. Archives of Pediatrics and Pediatric Surgery. 2024;2(4):28-34. (In Russ.) https://doi.org/10.31146/2949-4664-apps-2-4-28-34